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LElTER TO THE EDITOR 

On the correspondence between the self-consistent ZD Poisson- 
Boltzmann structures and the sine-Gordon waves 

N Martinov and N Vitanov 
Faculty of Physics, University of Sofia, blvd. A. Ivanov 5, Sofia 1126, Bulgaria 

Received 14 May 1991 

Abstract. By means o f  the transformation connecting the sine-Gordon equation and the 
two-dimensional Poisson-Boltmu" equation a correspondence between the self- 
consistent two-dimensional Poisson-BolUmann stmctores and the solutions of the sine- 
Gordon equation representing standing waves has been established. In this way two new 
solutions of the sine-Gordon equation were obtained and studied and their application for 
description of waves into ferromagnetics was examined. 

The Poisson-Boitzmann equation: 

JZ$ J2$ Jz$ . 
- + i + y = s i n h  $ 
JX2 Jy Jz  

is obtained from the Poisson equation: 

J'V J ~ V  a2v -+-+-= 2, 
Jx' Jy' Jz' Eo 

In (2) p is the density of charged particles that can be expressed by means of the 
concentrations of positive- and negative-charged particles: 

p = ( n + - n + ) e  (3) 

n ,  = no exp(-eV/kT) n- = no exp(eV/kT) (4) 

$=eV/kT. ( 5 )  

If n, and n- obey the Boltzmann statistic law: 

then (1) can be obtained from (2) i f  

In this paper the two-dimensional Poisson-Boltzmann equation: 

3 + q = s i n h  $ , ( x , y )  
ax2 Jy 

and its solutions whose mathematical form is: 
- 1  - $(x,y)=4tanh { f ( x ) g ( y ) )  

ITC disc~ssed. ! f f ! x )  = Af(nx; k:) and g ( y )  = p(py;  k2) where A, a, p are parameters, 
f and g are real Jacohi elliptic functions and k, and k2 are their corresponding elliptic 
integral modules, then: 

$(AY) =4tanh-'{Af(ax; h)g(py;  k2)1. (7) 
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The solutions of the two-dimensional Poisson-Boltzmann equation describe the 
plane distribution of the particles in a two-component Coulomb gas. “he solutions of 
type (7) reveal a tendency to self-organization, e.g. periodic plane distribution for a 
self-consistent two-component Coulomb gas. 

Solutions of type (7) were studied (Martinov and Ouroushev 1986) and it was 
shown that the following five different types of solution exist: 

(8) (tl = 4  tanh-’{A cn(ax; k , )  cn(py; k 2 ) }  

A’+ 1 
a 2 +  p2 = a2-1 A2{a2(a2-1)-1} A ~ { B ~ ( A ’ + ~ ) - ~ }  

k: = k: = 
a2(A2- 1)2 p2(a2 - 1) 

(t2=4tanh-’{Adn(mx; k,) sn(py; k 2 ) }  (9) 

k:=l- k: = A ~ { ~ ~ ( A ~ - I ) - I }  a2 = A2B2 a 2 ( ~ 2 -  I ) / A ~ -  1 
/3 2(A2 + 1) a2(A2-  1) 

a 2 =  a202 
0 1 2 ( ~ 2 + i ) / ~ 2 - i  A ~ (  1 - p 2 ( ~ 2  + 1 )} 

p2(A2+ 1) 
k:=1- 

a’( A2 + 1) 
k : = l +  

A2 
a 2 + p 2 = -  

1 -n2(a2+1)/A2 1 -p2(A2+1)/A2 
B2(A2+ 1) A2+ 1 

k:=1- 
a2 (A2+l )  

k : = l -  

The functions sn, cn, dn are real Jacobi elliptic functions (Abramowitz and Stegun 
1964). The solutions (8)-(12) are functions of two independent parameters, 01 and A. 
They describe two possible types of self-consistent two-dimensional structures 
(Martinov and Ouroushev 1986). 

The sine-Gordon equation is as follows: 

sin +(x, 1). 
a’+ a’$ 
ax2 at2 
-_-= 

In this letter the solutions of this equation are discussed. Their mathematical form is: 

(14) 

A, 01 and are parameters, f and g are real Jacobi elliptic functions; k, and k2 are 
their corresponding elliptic integral modules. There exist three solutions (Costabile et 
a l  1978). 

+ = 4  tan-l{Af(ax; k , ) g ( B f ;  k2)}. 

Plasma oscillations: 

+, =4tan-’{Acn(ax; k,) cn(Bt; k2)} 

A2+ 1 p’ - a2 = A2+1. A2{a2(A2+1)+1} A’{p’(A’+l)-l} 
P’(A2+ 1) 

k: = k: = 
O12(AZ- 1)2  
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Breather oscillations: 

+z = 4 tan-’{A dn( a x ;  k,) sn(pt; k z ) )  (16) 

Fluxon oscillations: 

Note that a transformation exists connecting the representation of the sine-Gordon 
solutions (14) to those of the Poisson-Boltzmann solutions (7) via the transformation: 

+=ib @ = i P  

y = -it A = i A  

4, a and A are real parameters. 
Due to the transformation ( 1 8 )  there exists a correspondence between the two- 

dimensional self-consistent Poisson-Boltzmann structures and the objects which are 
described by the solutions of the sine-Gordon equation. 

If (18) is imposed on the solutions*(8)-(12) the result will be: the solutions 9, (8) 
and 6, (15) correspond; the solutions #2 (9) and 4z (16) correspond; and the solutions 

(10) and +3 (17) also correspond. 
T.*o so!ii:ions Gf the :E Poi:ao~-8o!!zm2nn eq??.tie!! remain. The sn!ntlon $,&! 11) 

corresponds to the solution: 

The solution ILS (12) corresponds to the solution 

In  this letter the solutions (19) and (20) are studied. It  is known that the elliptic 
integral modules k, and kz of the Jacobi elliptic functions are limited bilaterally: 

O s k , s l  Os k 2 s  1 .  (21) 

From ( 2 1 )  it follows that the parameters a and 6 in +& are limited: 
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The Jacobi elliptic functions appearing in (19) are periodic so that 

where K ( k , )  and K ( k 2 )  are the corresponding elliptic integrals. From (22) and (23) 
it can be seen that the periods T, and T, are limited: 

T, C 2 K ( k , ) ( A 2 -  l ) /A 
T , < 2 K ( k 2 ) ( A 2 -  1)/A2. 

The following special case for solution (19) is possible: 

k,  = (1 - l/A4) k, = 0. 

Then 

+4=+4.1=4tan-’ (26) 

This is a very interesting combination between a special function and an elementary 
function. Here the period T, is minimal. If (21) and (20)  are combined the result will 
be: 

2 K (  k, ) (  A2+ 1)’l2A< T, S 2 K (  k , ) (A2+  1)/A 

4K ( k2)( a2 + 1)’I2A < T, < 4K ( k2) (A2  + l)/A. 

There are two special cases for the solution (20): 

k ,  = 0, k2 = l/A2. Then 

q5s., is independent of the variable x. 

k , = ( 1 - 1 / A 4 ) 1 / 2 , k 2 = 1 .  Then 

+s = +5,2 = 4 tan-’ (30) A’+ 1 

There is the combination between a special and an elementary function again. But 
now the elementary function is not a trigonometric one. It is a hyperbolic function. 
The period T, = 00 i.e. +5,2 is not a periodic function against the variable 1. 

The type of the new solutions is the following: the solution (19) belongs to fluxon 
oscillations and the solution (20) is similar to the breather oscillations although (20) 
there are certain differences between them. 

The sine-Gordon equations have many applications in physics. In this letter only 
one appiication-the description of the movement of the vectors of the magnetization 
at the weakly excited states of exchanged ferromagnetic-is discussed. In the approxi- 
mation of a non-dissipative medium these states are described by the Landau-Lifshitz 
equation . 
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Figure 1. Situation ofthe vector ofthe magnetization in comparison with coordinate Oxyr. 
The assumption is that the vecIor M belongs to the plane Oyr. 
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Figure 2. An oscillation of the vector of the magnetization described by means of the 
solution (20) of the sine-Gordon equation in the case where x = 0. 

On the assumption referring to a ferromagnetic which possesses an anisotropy 
whose type is an axis of easy magnetization the Landau-Lifshitz equation can be 
rcduced to the sine-Gordon equation (Enz 1961). Then + = 2y,  where y is the angle, 
concluded from the vector of magnetization M with the axis Oz (figure 1). 

Taking the solution (19)-if I = 0, then y = r-the vectors of magnetization regard- 
less of their position conclude an angle m with the axis Oz. If I begins to increase, the 
angle y begins to decrease and when f = K ( k , ) / B  then y = O .  Then y continues to 
decrease. The result of this examination is that the vectors of magnetization in every 
point x rotate in the same direction-counter clockwise. The direction of rotation of 
the vectors of magnetization described in the solution (19) is opposite to the direction 
of rotation in the solution (17). This is the basic difference between the solutions (17) 
and (19). 

The solution (20) describes the oscillations of the vectors of the magnetization 
around an average point. According to this (20) resembles (15) and (16). Along with 
this there are some features which belong to the solution (20). The solution (15) and 
(16) describe oscillations of the vector of the magnetization around $ = 0 or y = 0. 
The solution (20) describes the oscillations around Q = r / 2  or y = ~ / 4 .  The next 
difference between the solutions (16) and (20) is that of the behaviour of the magnetiz- 
ation in time is imposed on by different functions, an sn-function for (16) and 
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l/sn-function for (20). The oscillations of the vector of the magnetization described 
from the solution (20) are presented in figure 2 in the case where x=O. 
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